Installation, Operation, and Maintenance Manual

Model 3171
Table of Contents

Introduction and Safety

- Introduction ... 3
 - Inspect the package ... 3
 - Inspect the unit .. 3
 - Product warranty ... 3
- Safety .. 4
 - Safety message levels ... 4
 - Environmental safety ... 5
 - User health and safety ... 5
 - Safety regulations for Ex-approved products in potentially explosive atmospheres 7

Transportation and Storage

- Receive the unit .. 9
- Unpack the unit .. 9
- Pump handling ... 9
 - Lifting methods .. 9
- Pump storage requirements .. 10
 - Prepare the pump for long-term storage ... 11

Product Description

- General description ... 12
- Nameplate information ... 13
- Permissible temperatures ... 14

Installation

- Preinstallation ... 16
 - Inspect the pump ... 16
 - Pump location guidelines ... 16
 - Concrete foundation requirements ... 17
- Support plate installation .. 18
 - Install the support plate with a pit cover ... 18
 - Install the support plate without a pit cover ... 18
- Piping checklists ... 19
 - General piping checklist .. 19
 - Suction piping for optional dry pit, outside tank mount, and tailpipe applications 20
 - Steam lines .. 21
 - Final piping checklist ... 22
 - Stuffing box installation .. 22
 - Install the packed stuffing box .. 23
 - Install the pump, driver, and coupling ... 23
 - Motor installation and coupling alignment .. 23
 - Install the motor ... 23
 - Alignment checks .. 23
 - Permitted indicator values for alignment checks ... 24
 - Alignment measurement guidelines ... 24
 - Attach the dial indicators for alignment .. 24
 - Align the flexible coupling with a straight edge ... 25
 - Float control installation .. 25
 - Install the Square D 9036 simplex and 9038 duplex float controls 26

Commissioning, Startup, Operation, and Shutdown

- Preparation for startup ... 28
Table of Contents

Check the rotation...28
Thrust bearing lubrication...29
Flush the steady bearings...29
Sealed bearings..29
Lubricate the sealed bearings with grease cups...30
Shaft sealing with a mechanical seal..30
Shaft sealing with a stuffing box..31
Steam jacket pumps (molten sulfur construction)..31
Impeller-clearance setting...31
Pump priming...32
Install the coupling guard...32
Start the pump..33
Pump operation precautions...33
Shut down the pump..34
Make the final alignment of the pump and driver..34

Maintenance..35
Maintenance schedule..35
Bearing maintenance..35
Thrust bearings...36
Lubricate the bearings after a shutdown period..36
Lubricating-grease requirements..36
Steady bearings..37
Shaft-seal maintenance..37
Mechanical-seal maintenance...37
Packed stuffing-box maintenance..38
Disassembly..38
Disassembly precautions...38
Tools required..39
Drain the pump...39
Remove the pump from the sump..39
Remove the impeller..41
Disassemble the column...42
Preassembly inspections...43
Replacement guidelines..43
Shaft replacement guidelines...43
Bearings inspection..44
Bearing fits and tolerances...44
Reassembly...45
Assemble the column and support plate..45
Assemble the rotating element...46
Assemble the column..46
Assemble the impeller, suction cover, and strainer...47

Troubleshooting...48
Operation troubleshooting...48
Assembly troubleshooting...49

Parts Listings and Cross-Sectional Drawings...50
Dimensional drawings..50
Parts list...51
Cross-sectional diagrams...54

Local ITT Contacts..56
Regional offices..56
Introduction and Safety

Introduction

Purpose of this manual

The purpose of this manual is to provide necessary information for:

- Installation
- Operation
- Maintenance

CAUTION:

Read this manual carefully before installing and using the product. Improper use of the product can cause personal injury and damage to property, and may void the warranty.

NOTICE:

Save this manual for future reference, and keep it readily available at the location of the unit.

Inspect the package

1. Inspect the package for damaged or missing items upon delivery.
2. Note any damaged or missing items on the receipt and freight bill.
3. File a claim with the shipping company if anything is out of order.
 If the product has been picked up at a distributor, make a claim directly to the distributor.

Inspect the unit

1. Remove packing materials from the product.
 Dispose of all packing materials in accordance with local regulations.
2. Inspect the product to determine if any parts have been damaged or are missing.
3. If applicable, unfasten the product by removing any screws, bolts, or straps.
 For your personal safety, be careful when you handle nails and straps.
4. Contact your sales representative if anything is out of order.

Product warranty

Coverage

ITT undertakes to remedy faults in products from ITT under these conditions:

- The faults are due to defects in design, materials, or workmanship.
- The faults are reported to an ITT representative within the warranty period.
- The product is used only under the conditions described in this manual.
- The monitoring equipment incorporated in the product is correctly connected and in use.
- All service and repair work is done by ITT-authorized personnel.
- Genuine ITT parts are used.
- Only Ex-approved spare parts and accessories authorized by ITT are used in Ex-approved products.

Limitations

The warranty does not cover faults caused by these situations:

- Deficient maintenance
- Improper installation
- Modifications or changes to the product and installation made without consulting ITT
• Incorrectly executed repair work
• Normal wear and tear

ITT assumes no liability for these situations:
• Bodily injuries
• Material damages
• Economic losses

Warranty claim

ITT products are high-quality products with expected reliable operation and long life. However, should the need arise for a warranty claim, then contact your ITT representative.

Safety

WARNING:

- The operator must be aware of safety precautions to prevent physical injury.
- Any pressure-containing device can explode, rupture, or discharge its contents if it is over-pressurized. Take all necessary measures to avoid over-pressurization.
- Operating, installing, or maintaining the unit in any way that is not covered in this manual could cause death, serious personal injury, or damage to the equipment. This includes any modification to the equipment or use of parts not provided by ITT. If there is a question regarding the intended use of the equipment, please contact an ITT representative before proceeding.
- Installation, Operation, and Maintenance manuals clearly identify accepted methods for disassembling units. These methods must be adhered to. Trapped liquid can rapidly expand and result in a violent explosion and injury. Never apply heat to impellers, propellers, or their retaining devices to aid in their removal.
- Do not change the service application without the approval of an authorized ITT representative.
- Never operate the pump below the minimum rated flow, when dry, or without prime.
- Never operate the pump without safety devices installed.
- Never operate the pump with the discharge valve closed.
- Never operate the pump with the suction valve closed.

Safety message levels

Definitions

<table>
<thead>
<tr>
<th>Safety message level</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER:</td>
<td>A hazardous situation which, if not avoided, will result in death or serious injury</td>
</tr>
<tr>
<td>WARNING:</td>
<td>A hazardous situation which, if not avoided, could result in death or serious injury</td>
</tr>
<tr>
<td>CAUTION:</td>
<td>A hazardous situation which, if not avoided, could result in minor or moderate injury</td>
</tr>
</tbody>
</table>
Environmental safety

The work area

Always keep the pump station clean to avoid and/or discover emissions.

Recycling guidelines

Always recycle according to these guidelines:
1. If the unit or parts are accepted by an authorized recycling company, then follow local recycling laws and regulations.
2. If the unit or parts are not accepted by an authorized recycling company, then return them to the nearest ITT representative.

Waste and emissions regulations

Observe these safety regulations regarding waste and emissions:
• Dispose appropriately of all waste.
• Handle and dispose of the pumped fluid in compliance with applicable environmental regulations.
• Clean up all spills in accordance with safety and environmental procedures.
• Report all environmental emissions to the appropriate authorities.

Reference for electrical installation

For electrical installation requirements, consult your local electric utility.

User health and safety

General precautions

The product is designed for use in liquids that can be hazardous to health. Observe these rules when working with the product:
• Make sure that all personnel who work with sewage systems are vaccinated against diseases to which they may be exposed.
• Observe strict personal cleanliness.

Safety equipment

Use safety equipment according to the company regulations. Use this safety equipment within the work area:
• Helmet
• Safety goggles (with side shields)
• Protective shoes
• Protective gloves
• Gas mask
• Hearing protection
The work area

Observe these regulations and warnings in the work area:

• Always keep the work area clean.
• Pay attention to the risks presented by gas and vapors in the work area.
• Avoid all electrical dangers. Pay attention to the risks of electric shock or arc flash hazards.

Product and product positioning requirements

Observe these requirements for the product and the product positioning:

WARNING:

• Only use fasteners of the proper size and material.
• Replace all corroded fasteners.
• Make sure that all fasteners are properly tightened and that there are no missing fasteners.

• Never operate a pump unless safety devices are installed.
• Never operate a pump unless a coupling guard is installed.
• Never force the piping in order to make a connection with a pump.
• Never run a pump below the minimum rated flow or with any suction or discharge valve closed.

Electrical connections regulations

Electrical connections must be made by certified electricians in compliance with all international, national, state, and local regulations.

Observe these guidelines and warnings for electrical connections:

• Make sure that the product is isolated from the power supply and cannot be energized by mistake. This guideline also applies to the control circuit.
• Make sure that the thermal contacts are connected to a protection circuit according to the product approvals, and that they are in use.

Precautions before work

Observe these safety precautions before you work with the product or are in connection with the product:

• Provide a suitable barrier around the work area, for example, a guard rail.
• Make sure that all safety guards are in place and secure.
• Allow all system and pump components to cool before you handle them.
• Make sure that you have a clear path of retreat.
• Make sure that the product cannot roll or fall over and injure people or damage property.
• Make sure that the lifting equipment is in good condition.
• Use a lifting harness, a safety line, and a breathing device as required.
• Make sure that the product is thoroughly clean.
• Make sure that there are no poisonous gases within the work area.
• Make sure that you have quick access to a first-aid kit.
• Disconnect and lock out power before servicing.
• Check the explosion risk before you weld or use electric hand tools.

Precautions during work

Observe these safety precautions when you work with the product or are in connection with the product:

• Never work alone.
• Always wear protective clothing and hand protection.
• Stay clear of suspended loads.
• Always lift the product by its lifting device.
• Beware of the risk of a sudden start if the product is used with an automatic level control.
• Beware of the starting jerk, which can be powerful.
• Rinse the components in water after you disassemble the pump.
Wash the skin and eyes

Do the following if chemicals or hazardous fluids have come into contact with your eyes or your skin:

<table>
<thead>
<tr>
<th>If you need to wash your...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>1. Hold your eyelids apart forcibly with your fingers.</td>
</tr>
<tr>
<td></td>
<td>2. Rinse the eyes with eyewash or running water for at least 15 minutes.</td>
</tr>
<tr>
<td></td>
<td>3. Seek medical attention.</td>
</tr>
<tr>
<td>Skin</td>
<td>1. Remove contaminated clothing.</td>
</tr>
<tr>
<td></td>
<td>2. Wash the skin with soap and water for at least one minute.</td>
</tr>
<tr>
<td></td>
<td>3. Seek medical attention, if required.</td>
</tr>
</tbody>
</table>

Safety regulations for Ex-approved products in potentially explosive atmospheres

Description of ATEX

The ATEX directives are a specification enforced in Europe for electrical and non-electrical equipment. ATEX deals with the control of potentially explosive atmospheres and the standards of equipment and protective systems used within these atmospheres. The relevance of the ATEX requirements is not limited to Europe. You can apply these guidelines to equipment installed in any potentially explosive atmosphere.

General guidelines

ATEX compliance is only fulfilled when the pump is operated within its intended use, for example within its intended hydraulic range. The conditions of the service must not be changed without approval of an authorized ITT representative. When installing or maintaining ATEX-compliant pumps, follow these guidelines:

- Always install ATEX-approved equipment in compliance with the directive and applicable standards (IEC/EN 60079–14).
- Do not install FM-approved products in locations that are classified as hazardous in the national electric code, ANSI/NFPA 70–2005.

WARNING:

Installation, Operation, and Maintenance manuals clearly identify accepted methods for disassembling units. These methods must be adhered to. Trapped liquid can rapidly expand and result in a violent explosion and injury. Never apply heat to impellers, propellers, or their retaining devices to aid in their removal.

If there are any questions regarding these requirements, the intended use, or if the equipment requires modification, contact an ITT representative before you proceed.

Personnel requirements

ITT disclaims all responsibility for work done by untrained and unauthorized personnel.

These are the personnel requirements for Ex-approved products in potentially explosive atmospheres:

- All work on the product must be carried out by certified electricians and ITT-authorized mechanics. Special rules apply to installations in explosive atmospheres.
- All users must know about the risks of electric current and the chemical and physical characteristics of the gas and/or vapor present in hazardous areas.
- The maintenance operation for Ex-approved products must be made in conformity to the international or national standards (IEC/EN 60079-17).

Product and product handling requirements

These are the product and product handling requirements for Ex-approved products in potentially explosive atmospheres:

- Only use the product in accordance with the approved motor data stated on the nameplates.
- The Ex-approved product must never run dry during normal operation. Dry running during service and inspection is only permitted outside the classified area.
• Never start a pump without the proper priming.
• Before you start working with the product, make sure that the product and the control panel are isolated from the power supply and the control circuit, so they cannot be energized.
• Do not open the product while it is energized or in an explosive gas atmosphere.
• Make sure that thermal contacts are connected to a protection circuit according to the approval classification of the product.
• Intrinsically safe circuits are normally required for the automatic level-control system by the level regulator if mounted in zone 0.
• The yield stress of fasteners must be in accordance with the approval drawing and the product specification.
• Make sure that the equipment is properly maintained:
 • Monitor the pump components and the end temperature of the liquid.
 • Maintain proper bearing lubrication.
• Do not modify the equipment without approval from an authorized ITT representative.
• Only use parts that have been provided by an authorized ITT representative.

Equipment for monitoring

For additional safety, use condition-monitoring devices. Condition-monitoring devices include but are not limited to these devices:

• Pressure gauges
• Flow meters
• Level indicators
• Motor load readings
• Temperature detectors
• Bearing monitors
• Leak detectors
• PumpSmart control system
Transportation and Storage

Receive the unit
1. Inspect the package for damaged or missing items upon delivery.
2. Note any damaged or missing items on the receipt and freight bill.
3. File a claim with the shipping company if anything is out of order.

Unpack the unit
1. Remove packing materials from the unit.
 Dispose of all packing materials in accordance with local regulations.
2. Inspect the unit to determine if any parts have been damaged or are missing.
3. Contact your ITT representative if anything is out of order.

Pump handling

WARNING:
• Make sure that the pump cannot roll or fall over and injure people or damage property.
• These pumps might use carbon or ceramic silicon carbide components. Do not drop the pump or subject it to shock loads as this can damage the internal ceramic components.

NOTICE: Use a forklift truck or an overhead crane with sufficient capacity to move the pallet with the pump unit on top. Failure to do so can result in equipment damage.

Lifting methods

WARNING:
• Assembled units and their components are heavy. Failure to properly lift and support this equipment can result in serious physical injury and/or equipment damage. Lift equipment only at the specifically identified lifting points. Lifting devices such as eyebolts, slings, and spreaders must be rated, selected, and used for the entire load being lifted.
• Crush hazard. The unit and the components can be heavy. Use proper lifting methods and wear steel-toed shoes at all times.
• Do not attach sling ropes to shaft ends.

Use the supplied lifting lugs and suitable slings in order to lift the entire pump to a vertical position and lower the unit into the sump. Then use the lifting lugs on the motor and a suitable sling in order to hoist the motor into position. Use a tag line attached to the casing end in order to prevent the pump from swinging.
Pump storage requirements

Requirements

Vertical pumps require proper preparation for storage and regular maintenance during storage. The pump is considered in storage when it has been delivered to the job site and is awaiting installation.

For specific requirements for storing motors, gearheads, and engines, contact the equipment manufacturer.

Storage preparation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Proper preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor storage area (preferred)</td>
<td>• Pave the area.</td>
</tr>
<tr>
<td></td>
<td>• Clean the area.</td>
</tr>
<tr>
<td></td>
<td>• Drain the area and keep it free from flooding.</td>
</tr>
<tr>
<td>Outdoor storage area (when indoor storage is not available)</td>
<td>• Observe all indoor storage requirements.</td>
</tr>
<tr>
<td></td>
<td>• Use weather-proof coverings such as flame-resistant sheeting or tarpaulins.</td>
</tr>
<tr>
<td></td>
<td>• Place coverings in a manner that maximizes drainage and air circulation.</td>
</tr>
<tr>
<td></td>
<td>• Tie coverings down in order to protect the pump from wind damage.</td>
</tr>
<tr>
<td>Placement of pumps and component parts</td>
<td>• Place the pump on skids, pallets, or shoring higher than 6 in. (15 cm) from the ground for good air circulation.</td>
</tr>
<tr>
<td></td>
<td>• Sort the parts in order to permit easy access for inspection and/or maintenance without excessive handling.</td>
</tr>
<tr>
<td>Stacking of pumps or component parts</td>
<td>• Make sure that racks, containers, or crates bear the full weight of pumps or parts in order to prevent distortion.</td>
</tr>
<tr>
<td></td>
<td>• Keep identification markings readily visible.</td>
</tr>
<tr>
<td></td>
<td>• Immediately replace any cover you remove for internal access.</td>
</tr>
</tbody>
</table>
Condition | Proper preparation
--- | ---
Rotation of the pump and bowl assembly shaft | • Rotate the pump and bowl assembly shaft counterclockwise once a month, at a minimum.
• Never leave the shaft in a previous position or in the extreme raised or lowered lateral position.
• Make sure that the shaft rotates freely.

Controlled storage facilities | • Maintain an even temperature of 10°F (6°C) or higher above the dew point.
• Keep the relative humidity to less than 50%.
• Make sure that there is little or no dust.

Uncontrolled storage facilities that have uneven temperatures, higher humidity, and/or dusty conditions | • Inspect the pump periodically to make sure that all preservatives are intact.
• Seal all pipe threads and flanged pipe covers with tape.

When pump is not in regular operation

If a pump has been installed, but is not in regular operation for an extended period of time, such as during a seasonal shutdown, then operate it for at least 15 minutes every two weeks, if possible.

Prepare the pump for long-term storage

For storage periods over six months, you must follow the pump storage requirements and this procedure:
1. Inspect the lube-oil and seal-flush piping and either fill the piping with rust-preventative oil, or recoat the piping periodically in order to prevent corrosion.
2. Place 10 lbs (4.5 kg) of moisture-absorbing desiccant or 5.0 lbs (2.3 kg) of vapor-phase inhibitor crystals near the center of the pump.
3. If the pump is assembled, place an additional one pound (0.5 kg) in the discharge nozzle and securely fasten the nozzle to the discharge elbow.
4. Install a moisture indicator near the perimeter of the pump.
5. Cover the pump with black polyethylene with a minimum thickness of 6.0 mil (0.15 mm), and seal it with tape.
6. Provide a small ventilation hole approximately 0.5 in. (12.0 mm) in diameter.
7. Provide a roof or shed shelter in order to protect the pump from direct exposure to the elements.
Product Description

General description

Product description

The 3171 is a vertical submerged bearing sump and process pump.

This model is based on three bearing frames with 17 hydraulic sizes. The S/ST group has identical bearings with a slightly different shaft on the impeller end for the S and ST. The M/MT group is identical in all aspects for the power end. However, the liquid end of the MT is common with the S group except that the MT is modified to accept a larger shaft. There are two MT sizes that are common with the S/ST group.

This table shows the number of hydraulic sizes available for each drive-unit size group. Note that each pump has a choice of two different discharge pipes which results in four combinations.

<table>
<thead>
<tr>
<th>Drive-unit size group</th>
<th>Number of hydraulic sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/ST</td>
<td>9</td>
</tr>
<tr>
<td>M/MT</td>
<td>8</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
</tr>
</tbody>
</table>

Casing

The casing has these features:
- A tangential discharge
- Is self-venting
- Has an integral bearing retainer
- Is precision-bored in order to ensure permanent alignment between the column casing, suction cover, and bearing

Impeller

The impeller is fully-open, keyed to the shaft, and held in place by a self-locking cap screw in order to ensure positive locking and prevent damage from reverse rotation. Impellers are spin-balanced (single plane) to ISO G6.3. The impeller is provided with back vanes in order to reduce the axial thrust and prevent the entrance of solids.

The impellers on this pump do not meet the dimensional requirements for dynamic balancing.

Strainer

The flat plate strainer is designed to maximize draw-down in a given sump depth. Openings are sized to prevent the entrance of large solids that are commonly found in open sumps.

Discharge elbow

The discharge elbow is designed to allow the pump to fit into the smallest possible opening. A threaded connection to the discharge pipe allows the pipe to be changed without removing the pump from the sump.

Column pipe

The column pipe has flanged connections that are machined in order to ensure true parallelism and to maintain steady bearings concentric with the shaft.

Shaft

The standard design uses a one-piece shaft in order to ensure accurate alignment. The shaft is precision-ground, polished, and straightened to keep vibration and deflection to a minimum. Standard bearing spans keep the shaft well below first critical speed for all sizes.
Bearings

The thrust bearing is a grease-lubed, double-row, angular contact ball bearing. The bearing is shouldered and locked to the shaft and housing. This enables the bearing to carry all of the thrust loads and some of the radial load. All fits are precision-machined to industry standards. The steady bearings are press fit sleeve bearings. Fits are designed for optimum life under all operating conditions.

Seals

This pump has three seals:

<table>
<thead>
<tr>
<th>Seal type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper labyrinth seal</td>
<td>This seal is used to exclude dirt and water from the thrust bearing.</td>
</tr>
<tr>
<td>Lower grease seal</td>
<td>This seal is used below the thrust bearing in order to contain the grease and exclude any possible contamination.</td>
</tr>
<tr>
<td>Carbon Teflon® casing collar</td>
<td>This seal is installed immediately behind the impeller in the casing in order to minimize recirculation back to the sump and maximize hydraulic efficiency.</td>
</tr>
</tbody>
</table>

Motor support

Motor supports are cast construction and precision-machined in order to maintain proper alignment between the motor and pump shaft with minimal shimming. Motor supports are designed for vertical C-face motors as standard. P-base supports and IEC adapters are available upon request.

Direction of rotation

The shaft rotates clockwise when you look down on the pump shaft.

Nameplate information

Important information for ordering

Every pump has a nameplate that provides information about the pump. The nameplate is located on the motor support.

When you order spare parts, identify this pump information:

- Model
- Size
- Serial number
- Item numbers of the required parts

Refer to the nameplate on the pump casing for most of the information. See Parts List for item numbers.

Motor support nameplate

Avoid death or serious injury: Do NOT operate pump against closed valves or blocked lines.
Table 1: Explanation of the nameplate

<table>
<thead>
<tr>
<th>Nameplate field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
<td>Pump model</td>
</tr>
<tr>
<td>SIZE</td>
<td>Size of the pump</td>
</tr>
<tr>
<td>S/N</td>
<td>Serial number of the pump</td>
</tr>
<tr>
<td>STD. DIM.</td>
<td>Standard dimension</td>
</tr>
<tr>
<td>HYDRO PRESS. PSI @ 100°F</td>
<td>Hydrotest pressure in pounds per square inch at 100°F</td>
</tr>
<tr>
<td>FLOW GPM</td>
<td>Rated pump flow, in gallons per minute</td>
</tr>
<tr>
<td>R.P.M.</td>
<td>Rated pump speed, revolutions per minute</td>
</tr>
<tr>
<td>MAX. DES. WORKING PRESS., PSI @ °F.</td>
<td>Maximum design working pressure, pounds per square inch at °F</td>
</tr>
<tr>
<td>HEAD FT.</td>
<td>Rated pump head, in feet</td>
</tr>
<tr>
<td>MAT'L.</td>
<td>Material of construction</td>
</tr>
<tr>
<td>IMP. DIA.</td>
<td>Diameter of the impeller</td>
</tr>
<tr>
<td>CONT./ ITEM NO.</td>
<td>Contract/item number</td>
</tr>
<tr>
<td>MAX. DIA.</td>
<td>Maximum impeller diameter</td>
</tr>
</tbody>
</table>

ATEX nameplate

![ATEX Ex II 2 G/D T4]

<table>
<thead>
<tr>
<th>Nameplate field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Group 2</td>
</tr>
<tr>
<td>2</td>
<td>Category 2</td>
</tr>
<tr>
<td>G/D</td>
<td>Pump can be used when gas and dust are present</td>
</tr>
<tr>
<td>T4</td>
<td>Temperature class</td>
</tr>
</tbody>
</table>

NOTICE: Make sure that the code classifications on the pump are compatible with the specific environment in which you plan to install the equipment. If they are not compatible, do not operate the equipment and contact your ITT representative before you proceed.

Permissible temperatures

Permissible temperatures

<table>
<thead>
<tr>
<th>Code</th>
<th>Maximum permissible surface temperature</th>
<th>Maximum permissible liquid temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>842°F (450°C)</td>
<td>700°F (372°C)</td>
</tr>
<tr>
<td>T2</td>
<td>572°F (300°C)</td>
<td>530°F (277°C)</td>
</tr>
<tr>
<td>T3</td>
<td>392°F (200°C)</td>
<td>350°F (177°C)</td>
</tr>
<tr>
<td>T4</td>
<td>275°F (135°C)</td>
<td>235°F (113°C)</td>
</tr>
<tr>
<td>T5</td>
<td>212°F (100°C)</td>
<td>Option not available</td>
</tr>
<tr>
<td>T6</td>
<td>185°F (85°C)</td>
<td>Option not available</td>
</tr>
</tbody>
</table>
NOTICE:
The code classification marked on the equipment must be in accordance with the specified area where you plan to install the equipment. If it is not, contact your ITT representative before you proceed.
Installation

Preinstallation

Precautions

WARNING:

- When installing in a potentially explosive environment, make sure that the motor is properly certified.
- You must earth (ground) all electrical equipment. This applies to the pump equipment, the driver, and any monitoring equipment. Test the earth (ground) lead to verify that it is connected correctly.

NOTICE: Supervision by an authorized ITT representative is recommended to ensure proper installation. Failure to do so may result in equipment damage or decreased performance.

Inspect the pump

1. Remove the plastic shipping plugs from the vent holes in the head column and the casing.

 ![Diagram](image)

 - "A" represents the location of the plugs

2. Remove all the equipment from the shipping containers.

3. Completely clean the underside of the support plate and both sides of the optional pit cover, if supplied.

4. Remove any grease from the machined surfaces.

Pump location guidelines

WARNING:

Assembled units and their components are heavy. Failure to properly lift and support this equipment can result in serious physical injury and/or equipment damage. Lift equipment only at the specifically identified lifting points. Lifting devices such as eyebolts, slings, and spreaders must be rated, selected, and used for the entire load being lifted.
<table>
<thead>
<tr>
<th>Guideline</th>
<th>Explanation/comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make sure that the space around the pump is sufficient.</td>
<td>This facilitates ventilation, inspection, maintenance,</td>
</tr>
<tr>
<td></td>
<td>and service.</td>
</tr>
<tr>
<td>If you require lifting equipment such as a hoist or tackle, make sure</td>
<td>This makes it easier to properly use the lifting</td>
</tr>
<tr>
<td>that there is enough space above the pump.</td>
<td>equipment.</td>
</tr>
<tr>
<td>Protect the unit from weather and water damage due to rain, flooding,</td>
<td>This is applicable if nothing else is specified.</td>
</tr>
<tr>
<td>and freezing temperatures.</td>
<td></td>
</tr>
<tr>
<td>Do not install and operate the equipment in closed systems unless the</td>
<td>Acceptable devices:</td>
</tr>
<tr>
<td>system is constructed with properly-sized safety devices and control</td>
<td>• Pressure relief valves</td>
</tr>
<tr>
<td>devices.</td>
<td>• Compression tanks</td>
</tr>
<tr>
<td></td>
<td>• Pressure controls</td>
</tr>
<tr>
<td></td>
<td>• Temperature controls</td>
</tr>
<tr>
<td></td>
<td>• Flow controls</td>
</tr>
<tr>
<td></td>
<td>If the system does not include these devices, consult</td>
</tr>
<tr>
<td></td>
<td>the engineer or architect in charge before you operate</td>
</tr>
<tr>
<td></td>
<td>the pump.</td>
</tr>
<tr>
<td>Take into consideration the occurrence of unwanted noise and vibration.</td>
<td>The best pump location for noise and vibration absorption</td>
</tr>
<tr>
<td></td>
<td>is on a concrete floor with subsoil underneath.</td>
</tr>
</tbody>
</table>

Concrete foundation requirements

Requirements

Make sure that you meet these requirements when you prepare the pump foundation:

- The foundation must be able to absorb any vibration.
- The foundation must be able to form a permanent and rigid support for the pumping unit.
- The foundation must be of adequate strength to support the complete weight of the pump and driver, plus the weight of the liquid that passes through it.
- There should be at least 0.5 in. (12.7 mm) clearance between the sides of the pump and any portion of the pit.

Typical installation

A typical installation has these characteristics:

- Bolts with a pipe sleeve that is two and a half times the size of the bolt diameter embedded in the concrete
- Properly sized
• Located in accordance with the dimensions given in the example drawing
• Enough space inside the pipe sleeves to allow the final position of the foundation bolts to align with the holes in the sub-base flange

Figure 3: Example of a typical installation

Support plate installation

Install the support plate with a pit cover

If access to the bottom of the pit cover is not possible during the installation process, you must assemble and install the pump (without the motor), support plate, and pit cover as a unit. You must install the pit cover perfectly level in order to make sure that the pump remains straight up and down when installed.
The vapor-proof option includes machined, gasketed fits between the support plate/pit cover and the pit cover/foundation. You must install these gaskets in order to ensure emissions performance. Bolt the pit cover to a metal sole plate with a machined surface in order to ensure an air-tight seal.

1. Carefully lower the pit cover onto the foundation bolts.
2. Use as long a level as possible in order to level the pit cover in all directions with shims or wedges.
3. Hand tighten the anchor bolts. Check the level and re-shim if necessary.
4. Tighten all anchor bolts in a star pattern in order to avoid distorting the pit cover.
5. If access to the bottom side is possible, carefully lower the pump and support plate onto the pit cover.
6. Install all bolts and hand tighten.
7. Check the level on the support plate and re-shim if necessary.
8. Tighten all bolts in a star pattern in order to avoid distorting the support plate.

Install the support plate without a pit cover

1. Carefully lower the pump and support plate onto the foundation bolts.
2. Level the support plate in all directions using shims and wedges.
3. If you use the vapor-proof option, then perform one of these actions in order to make sure that you have an air-tight seal:

<table>
<thead>
<tr>
<th>Support plate type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Insert the supplied gasket between the two flanges. Bolt the support plate to a metal sole plate that has a machined surface.</td>
</tr>
</tbody>
</table>
Support plate type | Action
--- | ---
Tank flange | Install the supplied gasket between the two flanges. Make sure that the mating flange on the tank is level. Use gasket material between the flanges in order to make minor adjustments.

Figure 4: Layout for a standard support plate with the vapor-proof option

4. Hand tighten the anchor bolts. Check the level and re-shim if necessary.
5. Tighten all anchor bolts in a star pattern in order to avoid distorting the support plate.

Piping checklists
General piping checklist

Precautions

CAUTION:
- Never draw piping into place by using force at the flanged connections of the pump. This can impose dangerous strains on the unit and cause misalignment between the pump and driver. Pipe strain adversely affects the operation of the pump, which results in physical injury and damage to the equipment.
- Vary the capacity with the regulating valve in the discharge line. Never throttle the flow from the suction side. This action can result in decreased performance, unexpected heat generation, and equipment damage.

Checklist

<table>
<thead>
<tr>
<th>Check</th>
<th>Explanation/comment</th>
<th>Checked</th>
</tr>
</thead>
</table>
| Check that all piping is supported independently of, and lined up naturally with, the pump flange. | This helps to prevent:
 - Strain on the pump
 - Misalignment between the pump and the drive unit
 - Wear on the pump bearings and the coupling
 - Wear on the pump bearings, seal, and shafting | |
| Keep the piping as short as possible. | This helps to minimize friction losses. | |
| Check that only necessary fittings are used. | This helps to minimize friction losses. | |
| Do not connect the piping to the pump until:
 - The grout for the baseplate or sub-base becomes hard.
 - The hold-down bolts for the pump and the driver are tightened. | — | |
| Make sure that all the piping joints and fittings are airtight. | This prevents air from entering the piping system or leaks that occur during operation. | |
If the pump handles corrosive fluids, make sure that the piping allows you to flush out the liquid before you remove the pump.

If the pump handles liquids at elevated temperatures, make sure that the expansion loops and joints are properly installed.

Make sure that all piping components, valves and fittings, and pump branches are clean prior to assembly.

Make sure that the isolation and check valves are installed in the discharge line.

Use cushioning devices.

<table>
<thead>
<tr>
<th>Check</th>
<th>Explanation/comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the pump handles corrosive fluids, make sure that the piping allows you to flush out the liquid before you remove the pump.</td>
<td>—</td>
</tr>
<tr>
<td>If the pump handles liquids at elevated temperatures, make sure that the expansion loops and joints are properly installed.</td>
<td>This helps to prevent misalignment due to linear expansion of the piping.</td>
</tr>
<tr>
<td>Make sure that all piping components, valves and fittings, and pump branches are clean prior to assembly.</td>
<td>—</td>
</tr>
<tr>
<td>Make sure that the isolation and check valves are installed in the discharge line.</td>
<td>Locate the check valve between the isolation valve and the pump. This will permit inspection of the check valve. The isolation valve is required for regulation of flow, and for inspection and maintenance of the pump. The check valve prevents pump or seal damage due to reverse flow through the pump when the driver is turned off.</td>
</tr>
<tr>
<td>Use cushioning devices.</td>
<td>This protects the pump from surges and water hammer if quick-closing valves are installed in the system.</td>
</tr>
</tbody>
</table>

Alignment criteria for pump flanges

<table>
<thead>
<tr>
<th>Type</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial</td>
<td>The flange gasket thickness is ±0.03 in. (0.8 mm).</td>
</tr>
<tr>
<td>Parallel</td>
<td>Align the flange to be within 0.001 in./in. to 0.03 in./in. (0.025 mm/mm to 0.8 mm/mm) of the flange diameter.</td>
</tr>
<tr>
<td>Concentric</td>
<td>You can easily install the flange bolts by hand.</td>
</tr>
</tbody>
</table>

Suction piping for optional dry pit, outside tank mount, and tailpipe applications

Checklist

<table>
<thead>
<tr>
<th>Check</th>
<th>Explanation/comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install an elbow at the pump.</td>
<td>Whenever possible, perform these actions: • Use long radius elbows. • Move the elbow further from the suction. • Eliminate unneeded elbows.</td>
</tr>
<tr>
<td>Make sure the suction piping is a larger diameter than the pump suction.</td>
<td>—</td>
</tr>
<tr>
<td>Install separate suction lines when more than one pump is operating from the same source of supply.</td>
<td>—</td>
</tr>
<tr>
<td>Make sure that the suction piping contains no air pockets.</td>
<td>—</td>
</tr>
<tr>
<td>Make sure that the suction piping slopes upwards toward the pump.</td>
<td>—</td>
</tr>
<tr>
<td>Make sure that all joints are air tight.</td>
<td>—</td>
</tr>
<tr>
<td>Provide a method to prime the pump.</td>
<td>For outside tank mount and dry pit applications, allow the fluid level inside the tank or pit to rise above the casing level. In tailpipe applications, submerge the casing before you start the pump.</td>
</tr>
</tbody>
</table>
Steam lines

Precautions

WARNING: Use proper safety precautions when dealing with high pressure air or fluid.

Checklist

<table>
<thead>
<tr>
<th>Check</th>
<th>Explanation/comment</th>
<th>Checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>For outside tank mount and dry pit applications, install an isolation valve in the suction line at least two pipe diameters from the suction.</td>
<td>This allows the line to be closed for pump inspection and maintenance. The isolation valve must be kept fully open during operation.</td>
<td></td>
</tr>
<tr>
<td>Make sure that the entrance to the suction pipe is kept adequately submerged below the free liquid surface.</td>
<td>This prevents vortices and air entrainment.</td>
<td></td>
</tr>
<tr>
<td>For an outside tank mount application, make sure that a column assembly is installed.</td>
<td>The column assembly allows the fluid that comes through the lower bushings to flow up through the column and back through the connection at the top of the column back to the tank. Connect the pipe at the top of the pump column back to the source tank in order to prevent fluid from entering the thrust bearing.</td>
<td></td>
</tr>
</tbody>
</table>
| Before you install the pump, become familiar with the location of the steam lines. | There are three connections above the support plate:
• Two steam connections
• One condensate return connection.
The steam connections are connected to the tops of the column and discharge jackets. | |
| Determine which method to use in order to connect the steam lines. | There are two methods you can use in order to connect the steam lines:
• You can use both steam lines as input for steam (preferred method).
• You can use one steam line as input for steam, while the other steam line is used as a feed through to additional pumps.
Only use this method if absolutely necessary, because it is difficult to control the steam at subsequent pumps. | |
| Before you install the pump, check the fittings for leaks. Use plant air or high pressure water. | The jackets are hydrotested by the factory at 100 psi before shipment. However, the tube fittings can become loose during transit.
If you use air to check for leaks, use a soap solution at each joint in order to check for air bubbles. | |
| Provide source of steam at 35 psi and 300°F (149°C). | Less than ideal conditions require higher pressure steam in order to keep the correct temperature. | |
| After the pump is brought to temperature for the first time, shut down the unit temporarily and readjust the impeller clearance. | Refer to Impeller clearance setting in the Operations chapter. | |
Final piping checklist

<table>
<thead>
<tr>
<th>Check</th>
<th>Explanation/comment</th>
<th>Checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check that the shaft rotates smoothly.</td>
<td>Rotate the shaft by hand. Make sure there is no rubbing that can lead to excess heat generation or sparks.</td>
<td>Checked</td>
</tr>
<tr>
<td>Re-check the alignment to make sure that pipe strain has not caused any misalignment.</td>
<td>If pipe strain exists, then correct the piping.</td>
<td></td>
</tr>
</tbody>
</table>

Stuffing box installation

This pump is a seamless design. Therefore, when temperatures exceed 180°F (82°C), you must move the thrust bearing away from the heat source in the pump by adding the upper stuffing box. Air can then circulate around the bearing in order to keep it cool.

The upper stuffing box is also used to minimize vapor emissions when the pump handles controlled substances.

![Diagram of pump parts]

1. Motor support
2. Upper stuffing box
3. Gasket
4. Discharge pipe
5. Support plate
6. Gasket
7. 3 in. (76.2 mm) NPT female connection
8. Pit cover
9. Gasket
Install the packed stuffing box

The stuffing box is packed at the factory. The packing is lubricated by a grease cup supplied with the pump.
1. Fill the grease cup with any lithium-based #2 grease.
2. Install the grease cup on the tapped opening on the stuffing box.
3. Turn the cap on the grease cup several turns in order to inject the grease into the packing.
4. Hand-tighten the gland nuts.

Install the pump, driver, and coupling

1. Mount and fasten the pump on the baseplate. Use applicable bolts.
2. Mount the driver on the baseplate. Use applicable bolts and hand tighten.
3. Install the coupling.
 See the installation instructions from the coupling manufacturer.

Motor installation and coupling alignment

WARNING:
- Follow shaft alignment procedures in order to prevent catastrophic failure of drive components or unintended contact of rotating parts. Follow the coupling installation and operation procedures from the coupling manufacturer.
- Always disconnect and lock out power to the driver before you perform any installation or maintenance tasks. Failure to disconnect and lock out driver power will result in serious physical injury.

NOTICE: Proper alignment is the responsibility of the installer and the user of the unit. Check the alignment of frame-mounted units before you operate the unit. Failure to do so can result in equipment damage or decreased performance.

Install the motor

Use NEMA Vertical C-face motors with this pump. P-base motor adapters and IEC motor adapters are available as options.
1. Install both coupling halves before you mount the motor.
 Refer to the instructions from the coupling manufacturer.
2. Use the lifting lugs on the motor in order to carefully lower the motor onto the pump.
 Make sure to align the bolt holes.
3. Before you connect the coupling, wire the motor and check the direction of rotation.
 The rotation arrow is on the motor support. The correct rotation is clockwise as you look down from the drive at the impeller.

Alignment checks

When to perform alignment checks

You must perform alignment checks under these circumstances:
- The process temperature changes.
- The piping changes.
- The pump has been serviced.
Types of alignment checks

<table>
<thead>
<tr>
<th>Type of check</th>
<th>When it is used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial alignment (cold alignment) check</td>
<td>Prior to operation when the pump and the driver are at ambient temperature.</td>
</tr>
<tr>
<td>Final alignment (hot alignment) check</td>
<td>After operation when the pump and the driver are at operating temperature.</td>
</tr>
</tbody>
</table>

Initial alignment (cold alignment) checks

<table>
<thead>
<tr>
<th>When</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before you grout the baseplate</td>
<td>This ensures that alignment can be accomplished.</td>
</tr>
<tr>
<td>After you grout the baseplate</td>
<td>This ensures that no changes have occurred during the grouting process.</td>
</tr>
<tr>
<td>After you connect the piping</td>
<td>This ensures that pipe strains have not altered the alignment. If changes have occurred, you must alter the piping to remove pipe strains on the pump flanges.</td>
</tr>
</tbody>
</table>

Final alignment (hot alignment) checks

<table>
<thead>
<tr>
<th>When</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>After the first run</td>
<td>This ensures correct alignment when both the pump and the driver are at operating temperature.</td>
</tr>
<tr>
<td>Periodically</td>
<td>This follows the plant operating procedures.</td>
</tr>
</tbody>
</table>

Permitted indicator values for alignment checks

NOTICE: The specified permitted reading values are valid only at operating temperature. For cold settings, other values are permitted. You must use the correct tolerances. Failure to do so can result in misalignment and reduced pump reliability.

When dial indicators are used to check the final alignment, the pump and drive unit are correctly aligned when these conditions are true:

- The total indicator runout is a maximum of 0.002 in. (0.05 mm) at operating temperature.
- The tolerance of the indicator is 0.0005 in./in. (0.0127 mm/mm) of indicator separation at operating temperature.

Alignment measurement guidelines

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotate the pump coupling half and the driver coupling half together so that the indicator rods have contact with the same points on the driver coupling half.</td>
<td>This prevents incorrect measurement.</td>
</tr>
<tr>
<td>Move or shim only the driver in order to make adjustments.</td>
<td>This prevents strain on the piping installations.</td>
</tr>
<tr>
<td>Make sure that the hold-down bolts for the driver feet are tight when you take indicator measurements.</td>
<td>This keeps the driver stationary since movement causes incorrect measurement.</td>
</tr>
<tr>
<td>Make sure that the hold-down bolts for the driver feet are loose before you make alignment corrections.</td>
<td>This makes it possible to move the driver when you make alignment corrections.</td>
</tr>
<tr>
<td>Check the alignment again after any mechanical adjustments.</td>
<td>This corrects any misalignments that an adjustment may have caused.</td>
</tr>
</tbody>
</table>

Attach the dial indicators for alignment

You must have two dial indicators in order to complete this procedure.

1. Attach two dial indicators on the pump coupling half (X):
 a) Attach one indicator (P) so that the indicator rod comes into contact with the perimeter of the driver coupling half (Y).
This indicator is used to measure parallel misalignment.
b) Attach the other indicator (A) so that the indicator rod comes into contact with the inner end of the driver coupling half.
This indicator is used to measure angular misalignment.

2. Rotate the pump coupling half (X) in order to check that the indicators are in contact with the driver coupling half (Y) but do not bottom out.
3. Adjust the indicators if necessary.

Align the flexible coupling with a straight edge

WARNING:
- Disconnect and lock out electrical power before installing or servicing the pump.
- When installing in a potentially explosive environment, make sure that the motor is properly certified.
- The coupling used in an ATEX classified environment must be properly certified.

Alignment of the pump and motor is of extreme importance for trouble-free mechanical operation. Straight-edge alignment by an experienced installer is adequate for most installations. Use dial indicators for disc couplings and applications where alignment to tighter tolerances is desirable. In these cases, use standard dial indicator procedures.
1. Lay a straight edge across both coupling rims at four points 90° apart.
2. Move the motor until a straight edge rests evenly at each position.
3. Repeat these steps until you achieve the correct alignment.
4. Install a flexible sleeve between the hubs per the manufacturer's directions included with the pump data package.
5. Tighten all motor bolts.

Float control installation

ITT supplies several different float controls. Refer to the float control installation instructions provided with the controls for the proper installation procedure. This topic describes the Square D 9036 Simplex and Square D 9038 Duplex float controls.

How float controls work

The on and off levels of the Square D 9036 simplex and the Square D 9038 duplex are controlled by adjusting the collars (335). As the liquid level rises, the float rises to contact the upper collar and the upward movement of the float rod causes the mechanical switch inside the control to close. This completes the circuit to the starter. Operation continues until the liquid level drops low enough for the float to contact the lower collar. This pulls the rod down, opening the switch and turning off the pump.

The only difference between the Square D 9036 simplex and the Square D 9038 duplex is in the operating sequence. For the Square D 9038 duplex, the first pump starts as the water level rises. This allows the float to contact the upper collar. When the water level drops down and shuts off the first pump, a lever arm inside the control mechanically switches to the second pump and it comes on for the next cycle.
If the first pump fails to keep up with demand, or not come on at all, then a continued rise in the level turns both pumps on. Both pumps run until the low-water level is reached. If both pumps are unable to keep up with the demand, then an optional high-water alarm switch can be supplied in the alternator to close a switch if the water level rises past the second pumps on the level. This switch can be wired into a customer-supplied alarm horn or light.

APEX high level alarm

The APEX high level alarm is an independent device used to sense fluid level and close a switch that activates a separate alarm. The switch is mounted on a pipe above the support plate. The pipe must extend into the sump 4 to 6 in. (10 to 15 cm) below the required actuation point. As the liquid level rises in the pipe, trapped air causes bellows inside the switch to inflate and trip a microswitch. The switch can then activate a light, horn, relay, solenoid valve, or other electric device.

Magnetrol displacer-type liquid level switch

The Magnetrol displacer-type liquid level switch is closed by a magnetic seal inside a sealed tube. Switch operation is controlled by the buoyancy of weighted displacers suspended on a spring. As liquid level rises, the resulting change in buoyancy moves the spring upwards. The spring movement causes a magnetic sleeve to attract a pivoted magnet, closing the actuating switch. Refer to installation guide supplied by the manufacturer for proper installation and configuration.

Float ball switches

Float balls are individual switches that are used in multiple configurations to control the pump circuit. The float balls are suspended in the sump to the desired control level. When the fluid level rises to the float ball, the switch begins to float. The float is either anchored to a pipe or weighted. This allows the switch to tilt when the fluid continues to rise. When the float tilts, a switch closes that you can use in order to turn the pump on, activate a high-level alarm, or control any other electrical device.

Install the Square D 9036 simplex and 9038 duplex float controls

A single float and rod assembly is used with the 9036 float switch on a simplex unit or the 9038 duplex alternator. Refer to the wiring diagram from the manufacturer for the correct wiring of the switch.

If a pit cover is supplied with the pump, the float switch support pipe (435) and the upper rod guide (337) are installed by the factory. If the pit cover is supplied by others, you must locate, drill, and tap the holes before you install the switch.
1. Diameter of the coverplate (A)
2. Radius (B)
3. CL of the pump
4. Radius of 7.0 in. (178.0 mm)
5. 1.25 in. (31.8 mm) NPT float switch NTG column
6. 0.38 in. (9.5 mm) NPT for the float rod guide
7. 8 in. (203.0 mm) diameter of float (standard)

<table>
<thead>
<tr>
<th>Number</th>
<th>Coverplate diameter (A)</th>
<th>Radius (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22 in. (559 mm)</td>
<td>14.50 in. (368 mm)</td>
</tr>
<tr>
<td>2</td>
<td>26.50 in. (673 mm)</td>
<td>16.50 in. (419 mm)</td>
</tr>
<tr>
<td>3</td>
<td>31.00 in. (787 mm)</td>
<td>18.50 in. (470 mm)</td>
</tr>
</tbody>
</table>

1. Before you install the pump in the sump, attach the lower guide arm (366) and the float rod guide (336) to the correct suction cover bolt (based on the layout).
2. Thread the float switch support pipe (435) and the upper rod guide (337) into the pit cover.
3. Attach the float switch bracket (398) to the float switch support pipe.
 You can rotate the float switch around the center line of the pump on the radius (B).
4. Install the float rod (334), float (342), and collars (335).
 You must maintain the radius (4) between the float switch column and the float.
Preparation for startup

WARNING:
- Failure to follow these precautions before you start the pump will lead to serious personal injury and equipment failure.
- Do NOT operate the pump below the minimum rated flows or with the suction or discharge valves closed. These conditions can create an explosive hazard due to vaporization of pumped fluid and can quickly lead to pump failure and physical injury.
- Always disconnect and lock out power to the driver before you perform any installation or maintenance tasks. Failure to disconnect and lock out driver power will result in serious physical injury.
- Operating the pump in reverse rotation can result in the contact of metal parts, heat generation, and breach of containment.

Precautions

NOTICE:
- Verify the driver settings before you start the pump.
- Make sure that the warm-up rate does not exceed 2.5°F (1.4°C) per minute.

You must follow these precautions before you start the pump:
- Flush and clean the system thoroughly to remove dirt or debris in the pipe system in order to prevent premature failure at initial startup.
- Bring variable-speed drivers to the rated speed as quickly as possible.
- Run a new or rebuilt pump at a speed that provides enough flow to flush and cool the close-running surfaces of the stuffing-box bushing.
- If temperatures of the pumped fluid will exceed 200°F (93°C), then warm up the pump prior to operation. Circulate a small amount of fluid through the pump until the casing temperature is within 100°F (38°C) of the fluid temperature.

At initial startup, do not adjust the variable-speed drivers or check for speed governor or over-speed trip settings while the variable-speed driver is coupled to the pump. If the settings have not been verified, then uncouple the unit and refer to instructions supplied by the driver manufacturer.

Check the rotation

WARNING:
- Operating the pump in reverse rotation can result in the contact of metal parts, heat generation, and breach of containment.
- Always disconnect and lock out power to the driver before you perform any installation or maintenance tasks. Failure to disconnect and lock out driver power will result in serious physical injury.

1. Lock out power to the driver.
2. Make sure that the coupling hubs are fastened securely to the shafts.
3. Make sure that the coupling spacer is removed.
 The pump ships with the coupling spacer removed.
4. Unlock power to the driver.
5. Make sure that everyone is clear, and then jog the driver long enough to determine that the direction of rotation corresponds to the arrow on the bearing housing or close-coupled frame.

6. Lock out power to the driver.

Thrust bearing lubrication

WARNING:
Make sure to properly lubricate the bearings. Failure to do so can result in excess heat generation, sparks, and premature failure.

Grease lubrication

This pump comes with a grease-lubricated duplex thrust bearing. The bearing is pre-lubricated at the factory with a lithium-based grease. Regrease the bearing according to the schedule in the Maintenance chapter.

Pure oil-mist lubrication

Pure oil-mist lubrication is an option only available on the API3171.

Flush the steady bearings

There are five 1/4-in. NPT pipe plugs on the standard support plate that you use to connect the flush lines. Each plug connects with each of the five bearings. Pumps with less than five bearings still have five plugs, but only the required number are connected to bearings.

1. Remove the plugs from the holes that are connected to flush lines.
2. Connect an external source of clean water to the taps.

 The water source must be able to deliver 1 to 2 GPM to each bearing.
3. Turn on the water in order to begin the flush.

Sealed bearings

Sealed bearings have a lip seal above and below the bearing in order to keep grit out of the bearing. Sealed bearings use a spring-loaded grease cup for lubrication. The bearings are pre-lubricated at the factory, but the grease cups ship in a separate box in order to prevent shipping damage. Fill the grease cups with grease and screw the cups into the taps that are connected to the bearings. Refill the cups with fresh grease as needed. Frequently inspect the grease cups after startup in order to check usage and establish the best relubrication interval.
Lubricate the sealed bearings with grease cups

For models with grease-lubricated bearings, the spring-operated automatic grease cups are designed to maintain constant lubrication of the intermediate pump bearings that are fixed to the vertical pump housing. The center stem protrudes out of the housing when the cup is full and gradually moves down into the housing as the grease is used. After the wing nut is threaded against the stem zerk fitting and the bottom of the wing nut rests on the cap of the grease cup, then the grease reservoir is empty and you must refill it.

Fill the housing

1. Turn the wing nut clockwise until the center stem is raised all the way and the wing nut does not turn any further.
2. Fit a pressurized grease gun to the top zerk fitting and pump the grease cup full until a small amount of grease starts to come out of the side vent of the housing.
3. Unthread the wing nut in order to energize the grease cup. Allow the internal spring pressure to push grease into the bearing lube line.
4. If the stem immediately recedes into the housing and the bearing has been purged, then complete these steps:
 a) Unthread the top lid in order to remove the top of the grease cup.
 b) Inspect the plunger for defects.
 If all the grease is found on the reverse (or back side) of the plunger, then it is defective and must be replaced.

Adjust the flow (preferred method)

1. Unthread the wing nut completely against the zerk fitting of the center stem.
2. Unlock the hex nut of the throttling screw and turn the slotted screw clockwise approximately one-half turn at a time.
3. Relock the hex nut and monitor the stem movement.

If the grease in the grease cup is completely consumed in 1 to 2 weeks of operation, then the flow is correct and will maintain the proper amount of grease to the bearings.

Adjust the flow (alternate method)

This method provides a more precise amount of grease to the bearings independent of changing operating temperatures and surrounding conditions. However, you must have a more controlled maintenance schedule in order to make sure this is done on a regular basis.
1. Leave the throttling screw locked and open.
2. Back off the wing nut several turns for every 2 to 3 days of operation.

Shaft sealing with a mechanical seal

Precautions

WARNING:
The mechanical seal used in an Ex-classified environment must be properly certified. Prior to startup, make sure that all areas that could leak pumped fluid to the work environment are closed.
NOTICE:

- The mechanical seal must have an appropriate seal-flush system. Otherwise, excess heat generation and seal failure can occur.
- Cooling systems such as those for bearing lubrication and mechanical-seal systems must be operating properly to prevent excess heat generation, sparks, and premature failure.
- Sealing systems that are not self-purging or self-venting, such as plan 23, require manual venting prior to operation. Failure to do so will result in excess heat generation and seal failure.

Shipping

Pumps may be shipped with or without a mechanical seal installed.

Cartridge-type mechanical seals

Cartridge-type mechanical seals are commonly used. Cartridge seals are preset by the seal manufacturer and require no field settings. Cartridge seals installed by the user require disengagement of the holding clips prior to operation, allowing the seal to slide into place. If the seal has been installed in the pump by ITT, these clips have already been disengaged.

Other mechanical seal types

For other types of mechanical seals, refer to the instructions provided by the seal manufacturer for installation and setting.

Shaft sealing with a stuffing box

This pump is a seamless design. Therefore, when temperatures exceed 180°F (82°C), you must move the thrust bearing away from the heat source in the pump by adding the upper stuffing box. Air can then circulate around the bearing in order to keep it cool.

The upper stuffing box is also used to minimize vapor emissions when the pump handles controlled substances.

Steam jacket pumps (molten sulfur construction)

The steam jacketed connections are located on the support plate. The "steam in" line is connected to an appropriate source of steam, and the "steam out/condensate" connections are made as dictated by the installation requirements. A suitable trap should be used.

Impeller-clearance setting

Importance of a proper impeller clearance

A proper impeller clearance ensures that the pump runs at high performance.

WARNING:

- The impeller clearance setting procedure must be followed. Improperly setting the clearance or not following any of the proper procedures can result in sparks, unexpected heat generation, and equipment damage.

The clearance is set at 0.015 in. (0.4 mm) off of the suction cover at the factory, but could change due to piping attachment.
Pump priming

WARNING:
These pumps are not self priming and must be fully primed at all times during operation. Loss of prime can lead to excessive heat and severe damage to the pump and seal.

CAUTION:
Do not run the pump dry, because this might damage the pump and/or the steady bearings.

Never start the pump until it has been properly primed. Fully submerge the pump casing prior to starting the pump.

For dry pit/outside tank mount units:
1. Ensure the suction supply line has adequate fluid head to prime the pump.
2. Slowly open the suction valve.

Install the coupling guard

WARNING:
- Never operate the pump without the coupling guard correctly installed.
- Always disconnect and lock out power to the driver before you perform any installation or maintenance tasks. Failure to disconnect and lock out driver power will result in serious physical injury.
- The coupling used in an Ex-classified environment must be properly certified and must be constructed from a non-sparking material.

This pump is shipped without the coupling guard installed, because the motor and coupling are also not installed.
1. Wrap the expanded metal shield (501) around the motor support.
2. Install the two guard springs (501L).
Start the pump

CAUTION:
• Immediately observe the pressure gauges. If discharge pressure is not quickly attained, stop the driver, reprime, and attempt to restart the pump.
• Observe the pump for vibration levels, bearing temperature, and excessive noise. If normal levels are exceeded, shut down the pump and resolve the issue.

1. Fully close or partially open the discharge valve, depending on system conditions.
2. Start the driver.
3. Slowly open the discharge valve until the pump reaches the desired flow.
4. Immediately check the pressure gauge to ensure that the pump quickly reaches the correct discharge pressure.
5. If the pump fails to reach the correct pressure, perform these steps:
 a) Stop the driver.
 b) Prime the pump again.
 c) Restart the driver.
6. Monitor the pump while it is operating:
 a) Check the pump for bearing temperature, excessive vibration, and noise.
 b) If the pump exceeds normal levels, then shut down the pump immediately and correct the problem.
 A pump can exceed normal levels for several reasons. See Troubleshooting for information about possible solutions to this problem.
7. Repeat steps 5 and 6 until the pump runs properly.
8. After the pump is brought to temperature for the first time, shut the unit down temporarily and re-adjust the impeller clearance.

Pump operation precautions

General considerations

CAUTION:
• Vary the capacity with the regulating valve in the discharge line. Never throttle the flow from the suction side since this can result in decreased performance, unexpected heat generation, and equipment damage.
• Do not overload the driver. Driver overload can result in unexpected heat generation and equipment damage. The driver can overload in these circumstances:
 • The specific gravity of the pumped fluid is greater than expected.
 • The pumped fluid exceeds the rated flow rate.
• Make sure to operate the pump at or near the rated conditions. Failure to do so can result in pump damage from cavitation or recirculation.

Operation at reduced capacity

WARNING:
Never operate any pumping system with a blocked suction and discharge. Operation, even for a brief period under these conditions, can cause confined pumped fluid to overheat, which results in a violent explosion. You must take all necessary measures to avoid this condition.
CAUTION:
• Avoid excessive vibration levels. Excessive vibration levels can damage the bearings, stuffing box or seal chamber, and the mechanical seal, which can result in decreased performance.
• Avoid increased radial load. Failure to do so can cause stress on the shaft and bearings.
• Avoid heat build-up. Failure to do so can cause rotating parts to score or seize.
• Avoid cavitation. Failure to do so can cause damage to the internal surfaces of the pump.

Operation under freezing conditions

NOTICE:
Do not expose an idle pump to freezing conditions. Drain all liquid that is inside the pump. Failure to do so can cause liquid to freeze and damage the pump.

Shut down the pump

WARNING:
The pump can handle hazardous and toxic fluids. Identify the contents of the pump and observe proper decontamination procedures in order to eliminate the possible exposure to any hazardous or toxic fluids. Wear the proper personal protective equipment. Potential hazards include, but are not limited to, high temperature, flammable, acidic, caustic, explosive, and other risks. You must handle and dispose of pumped fluid in compliance with the applicable environmental regulations.

1. Slowly close the discharge valve.
2. Shut down and lock the driver to prevent accidental rotation.

Make the final alignment of the pump and driver

WARNING:
• Always disconnect and lock out power to the driver before you perform any installation or maintenance tasks. Failure to disconnect and lock out driver power will result in serious physical injury.
• Follow shaft alignment procedures in order to prevent catastrophic failure of drive components or unintended contact of rotating parts. Follow the coupling installation and operation procedures from the coupling manufacturer.

You must check the final alignment after the pump and driver are at operating temperature. For initial alignment instructions, see the Installation chapter.
1. Run the unit under actual operating conditions for enough time to bring the pump, driver, and associated system to operating temperature.
2. Shut down the pump and the driver.
3. Remove the coupling guard.
 See Remove the coupling guard in the Maintenance chapter.
4. Check the alignment while the unit is still hot.
 See Pump-to-driver alignment in the Installation chapter.
5. Reinstall the coupling guard.
6. Restart the pump and driver.
Maintenance

Maintenance schedule

Maintenance inspections

A maintenance schedule includes these types of inspections:

- Routine maintenance
- Routine inspections
- Three-month inspections
- Annual inspections

Shorten the inspection intervals appropriately if the pumped fluid is abrasive or corrosive or if the environment is classified as potentially explosive.

Routine maintenance

Perform these tasks whenever you perform routine maintenance:

- Lubricate the thrust bearings.
- Inspect the seal or packing, if present.

Routine inspections

Perform these tasks whenever you check the pump during routine inspections:

- Check for unusual noise, vibration, and bearing temperatures.
- Check the pump and piping for leaks.
- Analyze the vibration.
- Inspect the discharge pressure.
- Inspect the temperature.
- Check the seal chamber and stuffing box for leaks.
 - Ensure that there are no leaks from the mechanical seal.
 - Adjust or replace the packing in the stuffing box if you notice excessive leaking.

Three-month inspections

Perform these tasks every three months:

- Check that the foundation and the hold-down bolts are tight.
- Check the packing if the pump has been left idle, and replace as required.
- Check the shaft alignment, and realign as required.

Annual inspections

Perform these inspections one time each year:

- Check the pump capacity.
- Check the pump pressure.
- Check the pump power.

If the pump performance does not satisfy your process requirements, and the process requirements have not changed, then perform these steps:

1. Disassemble the pump.
2. Inspect it.
3. Replace worn parts.

Bearing maintenance

These bearing lubrication sections list different temperatures of the pumped fluid. If the pump is ATEX-certified and the temperature of the pumped fluid exceeds the permitted temperature values, then consult your ITT representative.
Thrust bearings

The 3171 comes with a grease-lubricated duplex thrust bearing. The bearing is pre-lubricated at the factory. Regrease the bearing according to the schedule in the following table.

Table 2: Lubricating intervals in operating hours

<table>
<thead>
<tr>
<th>Drive-unit size group</th>
<th>Below 1800 RPM</th>
<th>1800 RPM</th>
<th>3000 RPM</th>
<th>3600 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/ST</td>
<td>2,000</td>
<td>2,000</td>
<td>1,200</td>
<td>750</td>
</tr>
<tr>
<td>M/MT</td>
<td>2,000</td>
<td>1,800</td>
<td>800</td>
<td>450</td>
</tr>
<tr>
<td>L</td>
<td>2,000</td>
<td>1,200</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Lubricate the bearings after a shutdown period

1. Flush out the bearings and bearing frame with a light oil to remove contaminants.
 During flushing, make sure to rotate the shaft slowly by hand.
2. Flush the bearing housing with the proper lubricating oil to ensure oil quality after cleaning.

Lubricating-grease requirements

Precautions

- **NOTICE:** Never mix greases of different consistencies (NLGI 1 or 3 with NLGI 2) or with different thickeners. For example, never mix a lithium-based grease with a polyurea-based grease. Doing so may result in decreased performance.
- **NOTICE:** Remove the bearings and old grease if you need to change the grease type or consistency. Failure to do so may result in equipment damage or decreased performance.

Bearing temperature

Bearing temperatures are generally about 20°F (18°C) greater than bearing-housing outer surface temperatures. This table shows the type of grease required for the operating temperature of the pump.

<table>
<thead>
<tr>
<th>Bearing temperature</th>
<th>Type of grease</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°F to 230°F (-15°C to 110°C)</td>
<td>Use a lithium-based mineral-oil grease with a consistency of NLGI 2.</td>
</tr>
<tr>
<td>Exceed 350°F (177°C)</td>
<td>Use a high-temperature grease. Mineral-oil greases should have oxidation stabilizers and a consistency of NLGI 3.</td>
</tr>
</tbody>
</table>

Grease recommendations based on temperature

Most pumps use Sunoco 2EP grease. High temperature units that can pump fluids with a temperature greater than 350°F (177°C) use Mobil SCH32.
This table shows which brand of grease to use when lubricating the pump.

<table>
<thead>
<tr>
<th>Brand</th>
<th>When temperature of pumped fluid is less than 350°F (177°C) - NLGI consistency 2</th>
<th>When temperature of pumped fluid is greater than 350°F (177°C) - NLGI consistency 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobil</td>
<td>Mobilux EP2</td>
<td>SCH32</td>
</tr>
<tr>
<td>Exxon</td>
<td>Unirex N2</td>
<td>Unirex N3</td>
</tr>
<tr>
<td>Sunoco</td>
<td>Mutipurpose 2EP</td>
<td>N/A</td>
</tr>
<tr>
<td>SKF</td>
<td>LGMT 2</td>
<td>LGMT 3</td>
</tr>
</tbody>
</table>
Regrease the thrust bearing

NOTICE: Make sure that the grease container, the greasing device, and the fittings are clean. Failure to do this can result in impurities entering the bearing housing when you regrease the bearings.

1. Wipe dirt from the grease fittings.
2. Remove the two grease-relief plugs from the bottom of the frame.
3. Fill both of the grease cavities through the fittings with a recommended grease until the fresh grease comes out of the relief holes.
4. Make sure that the frame seals are seated in the bearing housing.
 - If they are not, press them in place with the drains located at the bottom.
5. Reinstall the grease-relief plugs.
6. Wipe off any excess grease.
7. Recheck the alignment.

The bearing temperature usually rises after you regrease due to an excess supply of grease. Temperatures return to normal in about two to four operating hours as the pump runs and purges the excess grease from the bearings.

Steady bearings

Check the ID of the casing collar (155) and steady bearing (197) per the dimensions in the Bearing fits and tolerances table. If the ID is greater than what is allowed, remove the snap ring (369) and use a suitable hydraulic press in order to remove these items for replacement. If sealed bearings are provided, then you must also remove the lip seals (333H).

The bearing ID is slightly larger before you press it into the housing in order to allow for ID shrinkage after you press it in place.

Shaft-seal maintenance

Mechanical-seal maintenance

WARNING:

The mechanical seal used in an Ex-classified environment must be properly certified. Prior to startup, make sure that all areas that could leak pumped fluid to the work environment are closed.

CAUTION:

Never operate the pump without liquid supplied to mechanical seal. If you run a mechanical seal dry, even for a few seconds, this can cause seal damage. Physical injury can occur if a mechanical seal fails.

NOTICE:

- Sealing systems that are not self-purging or self-venting, such as plan 23, require manual venting prior to operation. Failure to do so will result in excess heat generation and seal failure.
- Cooling systems, such as those for bearing lubrication and mechanical-seal systems, must be operating properly to prevent excess heat generation, sparks, and premature failure.
- The mechanical seal must have an appropriate seal flush system or excess heat generation and seal failure can occur.

Reference drawing

The manufacturer supplies a reference drawing with the data package. Keep this drawing for future use when you perform maintenance and seal adjustments. The seal drawing specifies the required flush fluid and attachment points.
Before you start the pump

Check the seal and all flush piping. If the pump is shipped with oil-lubricated seals, keep the seal faces lubricated with oil at all times.

Packed stuffing-box maintenance

WARNING:
- Packed stuffing boxes are not allowed in an ATEX-classified environment.
- Never attempt to replace the packing until the driver is properly locked out and the coupling spacer is removed.

Lubrication intervals

The lubrication intervals vary and depend upon the temperature and gland tightness. Keep the grease cup full at all times.

Periodically make several turns on the grease-cup cap while you inject fresh grease into the stuffing box.
Check the pump daily upon initial operation, and extend this interval as required.

NOTICE:
Do not over-tighten the stuffing box. Excessive pressure can wear out packing prematurely and seriously damage the shaft.

Packing replacement

Replace the packing in this sequence:
1. Three rings of packing
2. Lantern ring
3. Two rings of packing
4. Gland

Disassembly

Disassembly precautions

WARNING:
- Make sure that the pump is isolated from the system and that pressure is relieved before you disassemble the pump, remove plugs, open vent or drain valves, or disconnect the piping.
- Always disconnect and lock out power to the driver before you perform any installation or maintenance tasks. Failure to disconnect and lock out driver power will result in serious physical injury.
- Crush hazard. The unit and the components can be heavy. Use proper lifting methods and wear steel-toed shoes at all times.
- The pump can handle hazardous and toxic fluids. Identify the contents of the pump and observe proper decontamination procedures in order to eliminate the possible exposure to any hazardous or toxic fluids. Wear the proper personal protective equipment. Potential hazards include, but are not limited to, high temperature, flammable, acidic, caustic, explosive, and other risks. You must handle and dispose of pumped fluid in compliance with the applicable environmental regulations.

NOTICE:
Make sure that all replacement parts are available before you disassemble the pump for overhaul.
Tools required

In order to disassemble the pump, you need these tools:

- Bearing puller
- Brass drift punch
- Cleaning agents and solvents
- Dial indicators
- Feeler gauges
- Hydraulic press
- Induction heater
- Lifting sling
- Micrometer
- Rubber mallet
- Screwdriver
- Snap-ring pliers
- Torque wrench with sockets
- Wrenches

Drain the pump

CAUTION:

- Allow all system and pump components to cool before you handle them to prevent physical injury.

1. Close the isolation valves on the suction and discharge sides of the pump.
 You must drain the system if no valves are installed.
2. Open the drain valve.
 Do not proceed until liquid stops coming out of the drain valve. If liquid continues to flow from the
 drain valve, the isolation valves are not sealing properly and you must repair them before you proceed.
3. Leave the drain valve open.
 Do not close the drain valve until the reassembly is complete.
4. Drain the liquid from the piping and flush the pump if it is necessary.
5. Disconnect all auxiliary piping and tubing.
6. Remove the coupling guard.
7. Disconnect the coupling.

Remove the pump from the sump

1. Remove the motor bolts (371).
2. Place the sling on the motor lifting lugs and remove the motor.
3. Remove the support plate anchor bolts.
4. Attach the eyebolts to the support plate.
5. Use properly-sized slings in order to lift the pump from the sump.
 Refer to the Installation chapter for the proper handling procedure.
6. Lay the pump horizontally on proper supports where there is sufficient clearance to disassemble the pump.
7. Remove the bolts (317N) in order to remove the strainer (187).

8. Remove the suction cover (182).
9. Remove and discard the suction cover gasket (351).
 Replace the gasket during reassembly.
10. Remove the discharge elbow-casing bolts (370H).
11. Disconnect any steady bearing flush tubing (190).
Remove the impeller

CAUTION:
Wear heavy work gloves when you handle impellers. The sharp edges can cause physical injury.

1. Loosen the set screw at the end of the impeller nut.
2. Loosen and remove the impeller nut.
 The impeller nut has left-hand threads.
3. Pull the impeller from the shaft.
 Use a spanning-type puller if required.

4. Remove the impeller key.
 Save the key for reassembly unless it is damaged.
5. For L group models only, do the following:
 a) Remove the casing (100) to adapter (108) bolts.
 b) Remove casing. Do not remove casing collar (155) at this time.
 c) Remove the adapter (108) to column bolts.
 d) Remove the adapter. Do not remove steady bearing (197) at this time.
Disassemble the column

1. Remove the column down to the steady bearing housing bolts (372B).

 If your pump has no intermediate steady bearings (only one column section), then skip this step since you do not have any column extension (306) or steady bearing housing (213).

 a) Start at the casing end of the pump and remove the column extensions (306), steady bearing housings (213), and deflectors (123) one at a time. Support the shaft in order to prevent bending while you remove these sections.

 It is not necessary to remove the head column (192). Do not remove the steady bearings at this time. Refer to inspection procedures prior to removal.

2. Remove the pump half coupling hub (233) and key.

3. Remove the locking bolts (370C) and then slide bearing shell (134) assembly with the shaft out through the motor support (240).

 CAUTION:
 Two people should handle any shaft over 9 feet long. Improper handling can bend the shaft.

4. Use a screwdriver in order to pry the labyrinth seal (332A) from the bearing shell (134).

 NOTICE:
 We recommend that you replace the labyrinth seal every time the pump is inspected.

5. Remove the bearing retaining ring (361A).
6. Slide the bearing shell (134) off the bearing and shaft.
7. Remove the locknut (136) and the lockwasher (382).
8. Use a suitable bearing puller in order to remove the bearing (112).
 Make sure to save the bearing for inspection.
9. Set the shaft on a table where it is adequately supported.
 You do not need to disassemble the pump any further unless you need to replace bad parts.

Preassembly inspections

Replacement guidelines

Casing check and replacement

Inspect the casing for cracks and excessive wear or pitting. Thoroughly clean gasket surfaces and alignment fits in order to remove rust and debris.

Repair or replace the casing if you notice any of these conditions:

- Localized wear or grooving that is greater than 1/8 in. (3.2 mm) deep
- Pitting that is greater than 1/8 in. (3.2 mm) deep
- Irregularities in the casing-gasket seat surface

Impeller replacement

This table shows the criteria for replacing the impeller parts:

<table>
<thead>
<tr>
<th>Impeller parts</th>
<th>When to replace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vane edges</td>
<td>When you see cracks, pitting, or corrosion damage</td>
</tr>
</tbody>
</table>

Gaskets, O-rings, and seats replacement

- Replace all gaskets and O-rings at each overhaul and disassembly.
- Inspect the seats. They must be smooth and free of physical defects.
 In order to repair worn seats, skin cut them in a lathe while you maintain dimensional relationships with other surfaces.
- Replace parts if the seats are defective.

Column sections

Inspect the column section(s) (306, 192) for any cracks or excessive corrosion damage. Replace if necessary.

Motor support

Inspect the motor support (240) for any cracks or excessive corrosion damage. Replace if necessary.

Shaft replacement guidelines

Shaft measurement check

Check the bearing fits of the shaft. If any are outside the tolerances shown in the Bearing fits and tolerances table, then replace the shaft.

Shaft straightness check

Check the shaft straightness. Use “V” blocks or balance rollers to support the shaft on the bearing fit areas. Replace the shaft if runout exceeds 0.001 in. (0.03 mm).

NOTICE:

Do not use shaft centers for the runout check as they may have been damaged during the removal of the bearings or impeller.
Shaft surface check

Check the shaft surface for damage, especially in areas indicated by the arrows in the following figure. Replace the shaft if it is damaged beyond reasonable repair.

Bearings inspection

Condition of bearings

Do not reuse bearings. The condition of the bearings provides useful information on operating conditions in the bearing frame.

Checklist

Perform these checks when you inspect the bearings:

- Inspect the bearings for contamination and damage.
- Note any lubricant condition and residue.
- Inspect the ball bearings to see if they are loose, rough, or noisy when you rotate them.
- Investigate any bearing damage to determine the cause. If the cause is not normal wear, correct the issue before you return the pump to service.

Bearing fits and tolerances

This table references the bearing fits and tolerances according to ISO 286 (ANSI/ABMA Standard 7) in inches (millimeters).

Table 3: Steady bearing tolerances

<table>
<thead>
<tr>
<th>Description</th>
<th>Bearing ID (pressed into place)</th>
<th>Housing bore</th>
<th>Running clearance (1/2 diametrical clearance)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S/ST</td>
<td>M/MT</td>
<td>L</td>
</tr>
<tr>
<td>Carbon</td>
<td>1.132–</td>
<td>1.633–</td>
<td>2.258–</td>
</tr>
<tr>
<td></td>
<td>1.134</td>
<td>1.635</td>
<td>2.260</td>
</tr>
<tr>
<td></td>
<td>(28.753–</td>
<td>41.478–</td>
<td>(57.353–</td>
</tr>
<tr>
<td></td>
<td>28.804</td>
<td>41.529</td>
<td>57.404</td>
</tr>
<tr>
<td>Bronze</td>
<td>1.129–</td>
<td>1.629–</td>
<td>2.256–</td>
</tr>
<tr>
<td></td>
<td>1.131</td>
<td>1.631</td>
<td>2.258</td>
</tr>
<tr>
<td></td>
<td>(28.677–</td>
<td>41.377–</td>
<td>(57.302–</td>
</tr>
<tr>
<td></td>
<td>28.727</td>
<td>41.427</td>
<td>57.353</td>
</tr>
<tr>
<td>Fluted</td>
<td>1.126–</td>
<td>1.627–</td>
<td>2.253–</td>
</tr>
<tr>
<td>elastomer</td>
<td>1.130</td>
<td>1.632</td>
<td>2.257</td>
</tr>
<tr>
<td></td>
<td>(28.600–</td>
<td>41.326–</td>
<td>(57.226–</td>
</tr>
<tr>
<td></td>
<td>28.702</td>
<td>41.453</td>
<td>57.353</td>
</tr>
<tr>
<td>Rulon</td>
<td>1.132–</td>
<td>1.633–</td>
<td>2.258–</td>
</tr>
<tr>
<td></td>
<td>1.134</td>
<td>1.635</td>
<td>2.260</td>
</tr>
<tr>
<td></td>
<td>(28.753–</td>
<td>41.478–</td>
<td>(57.353–</td>
</tr>
<tr>
<td></td>
<td>28.804</td>
<td>41.529</td>
<td>57.404</td>
</tr>
<tr>
<td>Casing</td>
<td>1.183–</td>
<td>1.678–</td>
<td>2.299–</td>
</tr>
<tr>
<td>collar</td>
<td>1.190</td>
<td>1.685</td>
<td>2.306</td>
</tr>
<tr>
<td></td>
<td>(30.048–</td>
<td>42.621–</td>
<td>(58.395–</td>
</tr>
<tr>
<td></td>
<td>30.226</td>
<td>42.799</td>
<td>58.472</td>
</tr>
</tbody>
</table>
Table 4: Thrust bearing fits

<table>
<thead>
<tr>
<th>Group</th>
<th>Shaft OD</th>
<th>Shell ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/ST</td>
<td>0.9848/0.9844</td>
<td>2.4416/2.4409</td>
</tr>
<tr>
<td></td>
<td>(25.0139/25.0038)</td>
<td>(62.0166/61.9989)</td>
</tr>
<tr>
<td>M/MT</td>
<td>1.5755/1.5749</td>
<td>3.5442/3.5433</td>
</tr>
<tr>
<td></td>
<td>(40.0177/40.0025)</td>
<td>(90.0227/89.9998)</td>
</tr>
<tr>
<td>L</td>
<td>2.1660/2.1655</td>
<td>4.7253/4.7240</td>
</tr>
<tr>
<td></td>
<td>(55.0164/55.0037)</td>
<td>(120.0226/119.9896)</td>
</tr>
</tbody>
</table>

Shaft runout tolerances

The following shaft runout tolerances apply to all size groups:

- Coupling end: 0.002 in. (0.051 mm)
- Shaft body: 0.0005 in./ft.
- Impeller end: 0.005 in. (0.127 mm)

Reassembly

Assemble the column and support plate

1. If you use the optional stuffing box, then attach the stuffing box (221) to support plate (189) with bolts (370L).
2. Attach the motor support (240):

<table>
<thead>
<tr>
<th>If ...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>You use the stuffing box</td>
<td>Attach the motor support (240) to the stuffing box with bolts (370J).</td>
</tr>
<tr>
<td>You do not use the stuffing box</td>
<td>Attach the motor support (240) to the support plate (189) with bolts (370J).</td>
</tr>
</tbody>
</table>
3. Attach the head column (192):

<table>
<thead>
<tr>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>You use the stuffing box</td>
<td>Attach the head column (192) to the stuffing box with bolts (370M).</td>
</tr>
<tr>
<td>You do not use the stuffing box</td>
<td>Attach the head column (192) to the motor support with bolts (370M).</td>
</tr>
</tbody>
</table>

Make sure that the vent holes are closer to the motor support.
Assemble the rotating element

CAUTION:
Two people should handle any shaft over 9 feet long. Improper handling can bend the shaft.

1. For all groups except S/ST, install the retaining ring (369A) on the shaft (122).
2. Install the thrust bearing (112) on the shaft.
 There are several methods that you can use in order to install bearings. The recommended method is to use an induction heater that heats as well as demagnetizes the bearing.

CAUTION:
Wear insulated gloves when you use a bearing heater. Bearings get hot and can cause physical injury.

3. Install the lockwasher (382) on the shaft (122). Make sure that the tang of lockwasher is in the keyway of the shaft.
4. Thread the locknut (136) onto the shaft and tighten the locknut until it is snug.
5. Bend any tang of the lockwasher into one of the slots on the locknut. Tighten the locknut if necessary to align a lockwasher tab with a locknut slot.
6. Press the grease seal (333) into the bearing shell (134).
7. Slide the bearing shell onto the pump-end of the shaft and over the bearing.
8. Insert the retaining ring (361A) in the bearing shell groove. Make sure to keep the flat side against the bearing.
9. Slide the labyrinth seal (332A) over the coupling-end of the shaft into the bearing shell until it is flush.
10. With the support plate in a vertical position, slide the shaft horizontally through the motor support. Support the shaft and column with suitable stands.
11. Install the hold-down bolts (370C) and jacking bolts (370D) with jam nuts (415).

Assemble the column

If intermediate steady bearings are required, then you need additional column extensions (306) and steady bearing housings (213).

1. Prepare the steady bearing housing assemblies, if applicable.
 You do not need to precisely center the steady bearing, and the holes in the bearing do not need to line up with the holes in the housing. A recessed area inside the housing (213) allows lubricants to find the opening in the bearing.
 a) Remove the snap ring (369), if applicable.
 b) Use a hydraulic press in order to press out the old steady bearing (197).
 c) Press in the new steady bearing.
A snap ring (369) is no longer required due to the fits. If your pump has a snap ring, then it is not necessary to reinstall it. However, the snap ring is still required on sealed bearings.

2. Slide the casing assembly onto the shaft and seat the casing flange against the column flange. Make sure the discharge nozzle is aligned with the discharge pipe hole in the support plate.

3. Install the bolts (371G).

Assemble the impeller, suction cover, and strainer

1. Add a film of oil to the shaft and place the impeller key (178) and impeller (101) on the shaft.
2. Check that all of the bearing shell bolts (370C and 370D) are completely backed off.
3. Install the impeller washer (199) and impeller screw (198).
 When you tighten the impeller screw, the impeller will be seated on the shaft. The impeller screw has a nylon insert to lock it in place. Do not exceed these torque values when you tighten the impeller screw:

<table>
<thead>
<tr>
<th>Group</th>
<th>Torque value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/ST</td>
<td>500 in-lbs (56 Nm)</td>
</tr>
<tr>
<td>M/MT and L</td>
<td>900 in-lbs (102 Nm)</td>
</tr>
</tbody>
</table>

4. Install the suction cover gasket (351), suction cover (182), and strainer (187) with bolts (317N).
 Alloy strainers have extra-heavy spacer washers (533) between the strainer and the suction cover. If the unit is supplied with a lower-float control guide arm (366), then use an extra-long bolt in this hole.

5. Check the axial travel of the impeller.
 If the travel is less than 0.030 in. (0.762 mm), then add extra gaskets (351) in order to obtain the minimum travel.

6. Install the discharge elbow gasket (351A) and the discharge elbow (315) using bolts (370H).
 Accurate alignment of the elbow is critical in order to make sure that there is no obstruction to the flow through the connection.

7. Install the discharge pipe (195), pipe nuts (242), and flange (195S, if used).
 Make sure that the pipe nuts are tight and that there is no strain on the pump.

8. Rotate the shaft by hand in order to make sure that there is no binding.

9. Connect all auxiliary piping.

10. Replace the pump half coupling hub (233) and lubricate the pump bearings.
Troubleshooting

Operation troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The pump is not delivering liquid.</td>
<td>The pump is not primed.</td>
<td>Make sure the pit is filled with liquid above the casing. On dry pit units, the casing and suction pipe must be completely filled.</td>
</tr>
<tr>
<td></td>
<td>The discharge head it too high.</td>
<td>Check the total head, particularly friction loss.</td>
</tr>
<tr>
<td></td>
<td>The motor speed is too low.</td>
<td>Check the motor speed.</td>
</tr>
<tr>
<td></td>
<td>The suction line is clogged.</td>
<td>Remove the obstructions.</td>
</tr>
<tr>
<td></td>
<td>The impeller, discharge pipe, or strainer is clogged.</td>
<td>Remove obstructions or back-flush the pump.</td>
</tr>
<tr>
<td></td>
<td>The shaft is rotating in the wrong direction.</td>
<td>Change the rotation. The rotation must match the arrow on the bearing housing or pump casing.</td>
</tr>
<tr>
<td></td>
<td>The suction lift is too high.</td>
<td>Shorten the suction pipe.</td>
</tr>
<tr>
<td></td>
<td>The amount of available NPSH is not sufficient.</td>
<td>Check the amount of NPSH available and required and adjust accordingly.</td>
</tr>
<tr>
<td>The pump is not producing the rated flow or head.</td>
<td>The shaft is rotating in the wrong direction.</td>
<td>Change the rotation. The rotation must match the arrow on the bearing housing or pump casing.</td>
</tr>
<tr>
<td></td>
<td>The discharge head is higher than expected.</td>
<td>Check the total head, particularly friction loss.</td>
</tr>
<tr>
<td></td>
<td>The impeller, discharge pipe, or strainer is clogged.</td>
<td>Remove obstructions or back-flush the pump.</td>
</tr>
<tr>
<td></td>
<td>The motor speed is too low.</td>
<td>Check the motor speed.</td>
</tr>
<tr>
<td></td>
<td>The suction line is clogged.</td>
<td>Remove the obstructions.</td>
</tr>
<tr>
<td></td>
<td>The suction lift is too high.</td>
<td>Shorten the suction pipe.</td>
</tr>
<tr>
<td></td>
<td>The impeller is worn or broken.</td>
<td>Inspect and replace the impeller if necessary.</td>
</tr>
<tr>
<td></td>
<td>The suction line has air or vapor pockets.</td>
<td>Rearrange the piping in order to eliminate air pockets.</td>
</tr>
<tr>
<td></td>
<td>The amount of available NPSH is not sufficient.</td>
<td>Check the amount of NPSH available and required and adjust accordingly.</td>
</tr>
<tr>
<td>The pump starts and then stops pumping.</td>
<td>The pump is not primed.</td>
<td>Re-prime the pump and check that the pump and suction line are full of liquid.</td>
</tr>
<tr>
<td></td>
<td>The float controls are not adjusted properly.</td>
<td>Check the float controls.</td>
</tr>
<tr>
<td></td>
<td>The strainer is clogged.</td>
<td>Check the sump for large items that the pump may be picking up. Check if the bearings are running hot.</td>
</tr>
<tr>
<td></td>
<td>The suction line has air or vapor pockets.</td>
<td>Rearrange the piping in order to eliminate air pockets.</td>
</tr>
<tr>
<td></td>
<td>The suction line has an air leak.</td>
<td>Repair the leak.</td>
</tr>
<tr>
<td></td>
<td>The bearings are running hot.</td>
<td>Realign the pump and driver.</td>
</tr>
<tr>
<td></td>
<td>The pump and driver are not aligned properly.</td>
<td>Check the lubricant for suitability and level.</td>
</tr>
<tr>
<td></td>
<td>There is not sufficient lubrication.</td>
<td>Check the cooling system.</td>
</tr>
<tr>
<td></td>
<td>The lubrication was not cooled properly.</td>
<td>Check the cooling system.</td>
</tr>
<tr>
<td>Symptom</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>The pump is noisy or vibrates.</td>
<td>The pump and driver are not aligned properly.</td>
<td>Realign the pump and driver.</td>
</tr>
<tr>
<td></td>
<td>The impeller is partly clogged.</td>
<td>Back-flush the pump in order to clean the impeller.</td>
</tr>
<tr>
<td></td>
<td>The impeller or shaft is broken or bent.</td>
<td>Replace the impeller or shaft as necessary.</td>
</tr>
<tr>
<td></td>
<td>The foundation is not rigid.</td>
<td>Tighten the hold-down bolts of the pump and motor. Make sure that the base plate is properly grouted without voids or air pockets.</td>
</tr>
<tr>
<td></td>
<td>The bearings are worn.</td>
<td>Replace the bearings.</td>
</tr>
<tr>
<td></td>
<td>Rotating parts are loose, broken, or rubbing against each other.</td>
<td>Replace parts as necessary.</td>
</tr>
<tr>
<td></td>
<td>The suction or discharge piping is not anchored or properly supported.</td>
<td>Anchor the suction or discharge piping as necessary according to recommendations in the Hydraulic Institute Standards Manual.</td>
</tr>
<tr>
<td></td>
<td>The pump is cavitating.</td>
<td>Locate and correct the system problem.</td>
</tr>
<tr>
<td>The motor requires excessive power.</td>
<td>The discharge head has dropped below the rated point and is pumping too much liquid.</td>
<td>Install a throttle valve. If this does not help, then trim the impeller diameter. If this does not help, then contact your ITT representative.</td>
</tr>
<tr>
<td></td>
<td>The liquid is heavier than expected.</td>
<td>Check the specific gravity and viscosity.</td>
</tr>
<tr>
<td></td>
<td>Rotating parts are rubbing against each other.</td>
<td>Check the parts that are wearing for proper clearances.</td>
</tr>
<tr>
<td></td>
<td>The motor speed is too high.</td>
<td>Check the motor speed.</td>
</tr>
<tr>
<td></td>
<td>The impeller clearance is too tight.</td>
<td>Adjust the impeller clearance.</td>
</tr>
</tbody>
</table>

Assembly troubleshooting

Table 5: Troubleshooting procedure

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is excessive shaft end play.</td>
<td>The internal clearance of the bearings is excessive.</td>
<td>Replace the bearings with a bearing of the correct type.</td>
</tr>
<tr>
<td></td>
<td>The thrust-bearing end cover is loose.</td>
<td>Tighten the screws.</td>
</tr>
<tr>
<td></td>
<td>There are too many shims under the thrust bearing end cover.</td>
<td>Remove the individual shims to obtain the proper thickness.</td>
</tr>
<tr>
<td>The runout for the shaft is excessive.</td>
<td>The shaft is bent.</td>
<td>Replace the shaft.</td>
</tr>
<tr>
<td>The runout for the bearing-frame flange is excessive.</td>
<td>The shaft is bent.</td>
<td>Replace the shaft.</td>
</tr>
<tr>
<td></td>
<td>The flange of the bearing frame is distorted.</td>
<td>Replace the bearing-frame flange.</td>
</tr>
<tr>
<td>The runout for the seal-chamber cover is excessive.</td>
<td>The seal-chamber cover is improperly seated on the frame.</td>
<td>Replace or re-machine the seal-chamber cover.</td>
</tr>
<tr>
<td></td>
<td>There is corrosion or wear on the seal-chamber cover.</td>
<td>Replace the seal-chamber cover.</td>
</tr>
<tr>
<td>The runout for the impeller wear ring is excessive.</td>
<td>The shaft is bent.</td>
<td>Replace the shaft.</td>
</tr>
<tr>
<td></td>
<td>The wear ring was machined improperly.</td>
<td>Replace or re-machine the impeller.</td>
</tr>
</tbody>
</table>
Figure 6: 3171 exploded view (part 1 of 2)
Parts list

Table 6: Parts list with materials of construction

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Part name</th>
<th>All iron</th>
<th>Bronze-fitted</th>
<th>Carbon steel</th>
<th>CD4-fitted</th>
<th>316SS</th>
<th>Alloy 20</th>
<th>Hast. B</th>
<th>Hast. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>Casing</td>
<td>1000</td>
<td>1000</td>
<td>1212</td>
<td>1216</td>
<td>1203</td>
<td>1204</td>
<td>1217</td>
<td>1215</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>Impeller</td>
<td>1018</td>
<td>1101</td>
<td>1212</td>
<td>1216</td>
<td>1203</td>
<td>1204</td>
<td>1217</td>
<td>1215</td>
</tr>
<tr>
<td>112</td>
<td>1</td>
<td>Thrust bearing</td>
<td></td>
<td>Double row angular contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>1</td>
<td>Shaft</td>
<td>2205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2216</td>
<td>2221</td>
<td>2263</td>
</tr>
<tr>
<td>123</td>
<td>1</td>
<td>Deflector</td>
<td>EPDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>1</td>
<td>Bearing shell</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>1</td>
<td>Bearing locknut</td>
<td>Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>1</td>
<td>Casing bushing</td>
<td>Carbon-filled PTFE (Teflon<sup>®</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>1</td>
<td>Impeller key</td>
<td>2229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2230</td>
<td>2247</td>
<td>2248</td>
</tr>
<tr>
<td>182</td>
<td>1</td>
<td>Suction cover</td>
<td>1000</td>
<td>1212</td>
<td>1216</td>
<td>1203</td>
<td>1204</td>
<td>1217</td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>1</td>
<td>Strainer</td>
<td>1000</td>
<td>3211</td>
<td></td>
<td></td>
<td></td>
<td>1204</td>
<td>1217</td>
<td>1215</td>
</tr>
<tr>
<td>189</td>
<td>1</td>
<td>Support plate</td>
<td>3201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>1</td>
<td>Flush tubing</td>
<td>As specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>Head column</td>
<td>6501</td>
<td>6545</td>
<td></td>
<td></td>
<td></td>
<td>6506</td>
<td>6519</td>
<td>6548</td>
</tr>
<tr>
<td>193B</td>
<td>1</td>
<td>Grease fitting</td>
<td>Carbon or as specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ The quantity depends on pump length and speed. Nuts and washers are omitted for clarity.
Parts Listings and Cross-Sectional Drawings (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Part name</th>
<th>All iron</th>
<th>Bronze -fitted</th>
<th>Carbon steel</th>
<th>CD4-fitted</th>
<th>316SS</th>
<th>Alloy 20</th>
<th>Hast. B</th>
<th>Hast. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>195</td>
<td>1</td>
<td>Discharge pipe</td>
<td>6501</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>6506</td>
<td>6519</td>
<td>6548</td>
</tr>
<tr>
<td>197</td>
<td>1</td>
<td>Steady bearings</td>
<td>Carbon or as specified</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>1</td>
<td>Impeller screw</td>
<td>2229</td>
<td></td>
<td></td>
<td>2230</td>
<td>2247</td>
<td>6548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>1</td>
<td>Impeller washer</td>
<td>2229</td>
<td></td>
<td></td>
<td>2230</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>1</td>
<td>Steady bearing housing</td>
<td>1000</td>
<td>1203</td>
<td>1204</td>
<td>1217</td>
<td>1215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>1</td>
<td>Motor support</td>
<td>1000</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>2</td>
<td>Pipe nut</td>
<td>1000</td>
<td></td>
<td>1203</td>
<td>1204</td>
<td>1217</td>
<td>1215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>1</td>
<td>Column extension</td>
<td>6501</td>
<td>6545</td>
<td>6506</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>1</td>
<td>Discharge elbow</td>
<td>1000</td>
<td>1212</td>
<td>1216</td>
<td>1203</td>
<td>1204</td>
<td>1217</td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>332A</td>
<td>1</td>
<td>Labyrinth seal</td>
<td>Carbon Teflon®</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333</td>
<td>1</td>
<td>Lip seal</td>
<td>Nitrile lip seal</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333H</td>
<td>2/Brg</td>
<td>Lip seal</td>
<td>Nitrile</td>
<td></td>
<td>Nitrile acrylic</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>1</td>
<td>Gasket (suction cover to casing)</td>
<td>Nitrile acrylic</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351A</td>
<td>1</td>
<td>Gasket (discharge elbow to casing)</td>
<td>Nitrile acrylic</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>361A</td>
<td>1</td>
<td>Retaining ring (thrust bearing)</td>
<td>Steel</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>1</td>
<td>Retaining ring (steady bearing)</td>
<td>PH15-7MO Stainless</td>
<td>C-20</td>
<td>Hastelloy</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>369A</td>
<td>1</td>
<td>Retaining ring (shaft)</td>
<td>M/MT, L Groups Only. Steel</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370C</td>
<td>3</td>
<td>Clamp bolt (bearing shell)</td>
<td>2210</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370D</td>
<td>3</td>
<td>Jack bolt (bearing shell)</td>
<td>2210</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370G</td>
<td>6</td>
<td>Bolt (column to casing)</td>
<td>2210</td>
<td></td>
<td>2229</td>
<td>2230</td>
<td>2247</td>
<td>2248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370H</td>
<td>4</td>
<td>Bold (elbow to casing)</td>
<td>2210</td>
<td></td>
<td>2229</td>
<td>2230</td>
<td>2247</td>
<td>2248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370L</td>
<td>4</td>
<td>Bolt (motor adapter to support plate)</td>
<td>2210</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370M</td>
<td>4</td>
<td>Bolt (head column to motor support)</td>
<td>2210</td>
<td></td>
<td>2229</td>
<td>2230</td>
<td>2247</td>
<td>2248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>4</td>
<td>Bolt (motor to motor support)</td>
<td>2210</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>1</td>
<td>Coupling guard</td>
<td>3122</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>501L</td>
<td>2</td>
<td>Guard springs</td>
<td>Steel</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Material code cross reference

<table>
<thead>
<tr>
<th>Goulds code</th>
<th>ASTM number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>A48 CI25B Cast Iron</td>
</tr>
<tr>
<td>1018</td>
<td>A536-84 60-42-10 Ductile Iron</td>
</tr>
<tr>
<td>1101</td>
<td>B584 Silicon Brass</td>
</tr>
<tr>
<td>1203</td>
<td>A743 CF8M 316 Stainless</td>
</tr>
<tr>
<td>1204</td>
<td>A743 CN7M Alloy 20</td>
</tr>
<tr>
<td>1212</td>
<td>A216 WCB Carbon Steel</td>
</tr>
<tr>
<td>1215</td>
<td>A494-90 CW6M C1,1 Hastelloy C</td>
</tr>
<tr>
<td>1216</td>
<td>A890 1A CD4MCuN</td>
</tr>
<tr>
<td>1217</td>
<td>A494 N-7M Hastelloy B</td>
</tr>
<tr>
<td>2205</td>
<td>C1045 Carbon Steel Ground and Polished</td>
</tr>
<tr>
<td>2210</td>
<td>A108 Gr1211 Carbon Steel</td>
</tr>
<tr>
<td>2216</td>
<td>A276 316 Stainless Ground and Polished</td>
</tr>
<tr>
<td>2229</td>
<td>A276-91A Stainless</td>
</tr>
<tr>
<td>Goulds code</td>
<td>ASTM number</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2230</td>
<td>B743 20CB3 Carpenter 20</td>
</tr>
<tr>
<td>2247</td>
<td>B335 Type B-2 Hastelloy B</td>
</tr>
<tr>
<td>2248</td>
<td>B574 C-276 Hastelloy C</td>
</tr>
<tr>
<td>2263</td>
<td>B335 B-2 Hastelloy B Ground and Polished</td>
</tr>
<tr>
<td>2264</td>
<td>B574 C-276 Hastelloy C Ground and Polished</td>
</tr>
<tr>
<td>3122</td>
<td>Aluminum</td>
</tr>
<tr>
<td>3201</td>
<td>A283 Grade D Carbon Steel Plate</td>
</tr>
<tr>
<td>3211</td>
<td>A240 316 Steel Plate</td>
</tr>
<tr>
<td>6501</td>
<td>A53 Type F Carbon Steel Schedule 40 Pipe</td>
</tr>
<tr>
<td>6506</td>
<td>B464 C20CB3 Carpenter 20 Schedule 40 Pipe</td>
</tr>
<tr>
<td>6511</td>
<td>Red Brass Pipe SPS</td>
</tr>
<tr>
<td>6519</td>
<td>B622 Hastelloy B Schedule 40 Pipe</td>
</tr>
<tr>
<td>6545</td>
<td>A312 316L Stainless Steel Schedule 40 Pipe</td>
</tr>
<tr>
<td>6548</td>
<td>Hastelloy C C-276 Schedule 40 Pipe</td>
</tr>
</tbody>
</table>
Cross-sectional diagrams

S/ST and M/MT groups
L group
Local ITT Contacts

Regional offices

<table>
<thead>
<tr>
<th>Region</th>
<th>Address</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
</table>
| North America (Headquarters) | ITT - Goulds Pumps
240 Fall Street
Seneca Falls, NY 13148
USA | +1–315–568–2811 | +1–315–568–2418 |
| Asia Pacific | ITT Industrial Process
10 Jalan Kilang #06-01
Singapore 159410 | +65–627–63693 | +65–627–63685 |
| Europe | ITT - Goulds Pumps
Millway Rise Industrial Estate
Axminster, Devon, England
EX13 5HU | +44–1297–630250 | +44–1297–630256 |
| Latin America | ITT - Goulds Pumps
Camino La Colina # 1448
Condominio Industrial El Rosal
Huechuraba – Santiago
8580000
Chile | +562–544–7000 | +562–544–7001 |
| Middle East and Africa | ITT - Goulds Pumps
Achileos Kyrou 4
Neo Psychiko 115 25 Athens
How did we measure up?

It is our sincere intention to exceed our customer's expectations on every order. Tell us if we achieved our goal on your order. Please take our customer satisfaction survey online at:

www.ittindustrialproducts.com/feedbacksurvey.html

We appreciate you taking the time to provide your feedback. Thank you for buying ITT pumps, parts, and controls.

Contact Us

Goulds Pumps has offices, warehouses and manufacturing facilities worldwide, while doing business in over 100 countries in the Americas, Europe, the Middle East and Asia Pacific. To find your nearest distributor, use our convenient Sales and Service Locator found on our Web site.

Visit our Web site for the latest version of this document and more information

http://www.gouldspumps.com